Mountains Of Opportunity To Serve Dynamic, Voice, Video, and Image Data To and From The Heartland of The Internet
CHECK OUT THESE KEY TOPICS

Server Market Driving Forces
- Server Market Shares
- Server Virtualization

SOA Foundation Architecture
- Advantage Mainframe
- Open Application Programming Interfaces

Laboratory Information Systems Market

IT Infrastructure

Service Level Objectives

Blade Servers

Thin Film Batteries

OPPORTUNITY ABOUNDS

WinterGreen Research, Inc.
Lexington, Massachusetts

www.wintergreenresearch.com
Server vendors adapt business strategy to focus on real time exchange of information on enterprise networks and the Internet. Network computer systems hardware leverages integration and messaging software. Network storage systems are adapting to the Internet.

Server vendors have positioned to help implement business strategy relative to real time exchange of information. Enterprise networks are built on data centers that leverage the Internet. A focus on network computer systems hardware has hidden the need to leverage shared workload and integration of applications. Messaging software renamed as ESBs supports exchange of information over the network. Network storage systems are adapting to the Internet.

Standalone servers enable network solutions that attack cost and complexity, accelerate service delivery, and provide mobility with security. Blade and mainframe servers combine these capabilities with the ability to support shared workload. Core elements of server business strategy include provision for end-to-end architecture that extends technology across scalable processor architectures.

Open systems technology implementation and is being combined with x86-based products. Server products are positioned to provide price-performance, flexibility, and portable systems. Devices including RFID readers, smart cards, and cell phones are interconnecting to server systems. Clustered systems are a significant aspect of market evolution.

Blade servers continue to be the fastest growing segment of the worldwide server market. Customers are increasing blade deployments and vendors are broadening the blades product portfolio. Blades and mainframes are in the next wave of product evolution and customer adoption because of their ability to implement shared workload.

As IT organizations become more familiar with the shared workload platforms, they are able to deploy blades in IT environments that are suited to take advantage the management capabilities, as well as the cost and serviceability benefits.

Unit shipments go down as virtualization and mainframes catch hold.

Servers enable network solutions that attack cost and complexity, accelerate service delivery, and provide mobility with security. Core elements of server business strategy include provision for end-to-end architecture that extends technology across scalable processor architectures.

Open systems technology implementation and is being combined with x86-based products. Server products are positioned to provide price-performance, flexibility, and portable systems. Devices including RFID readers, smart cards, and cell phones are interconnecting to server systems. Clustered systems are a significant aspect of market evolution.

On-going innovation in microprocessor architecture, systems design, networking integration and software to help ensure continuing evolution of server technology. Market participants seek to achieve price-performance advantage.
Deploying services over the network requires a server infrastructure platform that is enterprise-ready, developer-rich, and economically compelling. Servers work as a combination of software, hardware and services that will give the customer value. Server platforms are positioned as systems that lower administrative costs, lower developer training costs, and provides high availability, high reliability.

Server markets at $46.9 billion in 2007 are anticipated to reach $79.3 billion by 2013. SOA, services oriented architecture software is the primary market growth driver because it provides companies a way to achieve flexible response to changing market conditions using automated process.
Companies Profiled

Market Leaders
IBM
Hewlett Packard

Market Participants
Sun
Dell
Fujitsu/Fujitsu Siemens
Others

Server Market Opportunities, Market Strategies, and Market Forecasts
2008-201

REPORT METHODOLOGY

This is the 327th report in a series of market research reports that provide forecasts in communications, telecommunications, the internet, computer, software, telephone equipment, health equipment, and energy. The project leaders take direct responsibility for writing and preparing each report. They have significant experience preparing industry studies. Forecasts are based on primary research and proprietary data bases. Forecasts reflect analysis of the market trends in the segment and related segments. Unit and dollar shipments are analyzed through consideration of dollar volume of each market participation in the segment. Installed base analysis and unit analysis is based on interviews and an information search. Market share analysis includes conversations with key customers of products, industry segment leaders, marketing directors, distributors, leading market participants, opinion leaders, and companies seeking to develop measurable market share. Over 200 in depth interviews are conducted for each report with a broad range of key participants and industry leaders in the market segment. We establish accurate market forecasts based on economic and market conditions as a base. Use input/output ratios, flow charts, and other economic methods to quantify data. Use in-house analysts who meet stringent quality standards. Interviewing key industry participants, experts and end-users. Our research includes access to large proprietary databases. Literature search includes analysis of trade publications, government reports, and corporate literature.
Table of Contents

SERVER EXECUTIVE SUMMARY

- Server Market Driving Forces ... ES-1
- Server Market Shares .. ES-6
- Server Forecasts .. ES-9

SERVER MARKET DESCRIPTION AND MARKET DYNAMICS

1. SERVER MARKET DESCRIPTION AND MARKET DYNAMICS 1-1
 1.1 Business Solutions Designed To Support Business Productivity 1-1
 1.2 Blade Servers .. 1-2
 1.2.1 Promise Of Blade Servers .. 1-2
 1.3 Server Virtualization .. 1-4
 1.3.1 Virtualization Transforms Hardware Into Software 1-4
 1.3.2 VMware Approach to Virtualization 1-5
 1.3.3 Virtual Infrastructure ... 1-5
 1.4 SOA Foundation Architecture Addresses Flexible Response 1-9
 1.4.1 Real Time Internet Processing 1-10
 1.4.2 IT System Reliability .. 1-11
 1.5 Number Of Servers – Web Application 1-11
 1.6 10G Blade Interconnects and I/O 1-12
 1.6.1 IBM 10G Mid Plane Capability of BladeCenter-H, 10G Ethernet NIC chips from NetXen, and 10G Switch Module from BNT .. 1-13
 1.6.2 Blade and the Client .. 1-13
 1.7 Blades Are Green .. 1-14
 1.7.1 Multi-Core Architectures ... 1-18
 1.7.2 Ease Of Deployment ... 1-18
 1.8 Advantage Mainframe .. 1-19
 1.8.1 Mainframe as a Green Machine 1-20
 1.8.2 Resurgence Of The Mainframe 1-20
 1.9 Open Application Programming Interfaces 1-23
 1.9.1 Approach To Blade Server Development 1-25
 1.9.2 Digital Business Technology Reshapes Industries 1-27
 1.10 Next Generation of IT Infrastructure 1-28
 1.10.1 IT Focus On Issues Aligned With Changing Conditions Of Business ... 1-28
 1.11 Real-Time IT Infrastructure 1-30
 1.11.1 Real Time Use Of Blade Servers 1-30
 1.11.2 Real Time Processing .. 1-31
 1.12 IT Department Focus ... 1-32
 1.12.1 IT Governance Business Management Infrastructure Automation Market .. 1-33
 1.12.2 IT Governance ... 1-35
 1.12.3 Addressing IT Challenges 1-38
 1.13 Control Over The IT Department 1-40
1.13.1 IT Organizational Shifting Responsibilities 1-42
1.13.2 Maximizing The Business Value Of IT 1-45
1.13.3 Resource Planner 1-46
1.13.4 Project Resources 1-48
1.13.5 Evaluate Capacity By Role 1-49
1.13.6 Identify and Track Key Skills and Experience 1-49
1.13.7 Create And Search Skills Hierarchies 1-50
1.13.8 IT Financial Manager 1-51
1.13.9 Aligned with Business 1-53
1.13.10 Delivered As a Service 1-54
1.14 Service-Level Objectives 1-54
1.15 Utility Model 1-55

SERVER MARKET FORECASTS

2. SERVER MARKET SHARES AND MARKET FORECASTS 2-1
2.1 Server Market Driving Forces 2-1
2.1.1 Server End-to-End Architecture 2-4
2.1.2 Server Computing Market Driving Forces 2-5
2.1.3 Next Generation Of Computing Technology 2-9
2.1.4 Benefits Of Servers 2-10
2.2 Server Market Trends 2-13
2.3 Server Market Shares 2-15
2.4 Server Forecasts 2-24
2.4.1 Large Server Market Forecasts 2-27
2.4.2 IBM System z 2-31
2.4.3 Mainframe Is A Green Machine --- Overview 2-31
2.4.4 Advantage Mainframe 2-32
2.4.5 Mainframe As a Green Machine 2-34
2.4.6 SOA Foundation Architecture Addresses Flexible Response To Changing Market Conditions 2-34
2.4.7 Resurgence Of The Mainframe 2-36
2.4.8 Real Time Internet Processing 2-36
2.4.9 IT System Reliability 2-37
2.4.10 Cost of Electricity Escalating 2-38
2.4.11 Data Center Cost Metrics 2-39
2.4.12 Security Cost Analysis - Mainframe vs. Distributed System 2-41
2.4.13 Mid Range Server Markets 2-43
2.4.14 Small Server Market Forecasts 2-46
2.4.15 Low End x86 Server Market Dynamics 2-50
2.4.16 Virtualization, Multicore Chips 2-51
2.4.17 Microsoft Virtualization 2-52
2.5 Blade Servers 2-54
2.5.1 Constraints Of Blade Servers 2-55
Blade Server Market Shares 2-56
Blade Server Market Forecasts 2-58
2.6 Power Usage in Data Centers 2-61
2.7 Network Fabric 2-61
2.7.1 Blades and Virtualization: Transforming Enterprise Computing 2-63
2.7.2 Data Center Intelligence 2-64
2.8 Server Pricing 2-66
2.8.1 IBM Entry Server Pricing 2-66
2.8.2 Sun Microsystems Blade Pricing 2-66
2.9 Server Regional Analysis 2-67
2.9.1 US Server Analysis 2-69
2.9.2 EMEA Server Analysis 2-71
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9.3</td>
<td>Asian Server Analysis</td>
<td>2-72</td>
</tr>
<tr>
<td>2.10</td>
<td>Blade Server Support for IT Infrastructure</td>
<td>2-73</td>
</tr>
<tr>
<td>2.10.1</td>
<td>IBM High End Blade Server Market Shares</td>
<td>2-76</td>
</tr>
<tr>
<td>2.10.2</td>
<td>eGenera Data Center Blade Server Solutions</td>
<td>2-77</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Rapid Provisioning</td>
<td>2-79</td>
</tr>
</tbody>
</table>

3. SERVER PRODUCT DESCRIPTION

3.1 High-End Servers
- **IBM High-End: UNIX servers** 3-1
- **IBM System P** 3-4
- **IBM Power Architecture** 3-7
- **IBM Power Architecture Transaction Processing** 3-7
- **IBM BladeCenter** 3-9
- **IBM BladeCenter Extended Memory** 3-9
- **IBM BladeCenter HS21** 3-10
- **IBM BladeCenter Modular Systems** 3-15
- **IBM Director and IBM Director Extensions** 3-22
- **IBM BladeCenter HS21 High-Performance And High Availability** 3-23
- **IBM BladeCenter HS21 Extended Memory** 3-24
- **IBM System X Tape Autoloader** 3-26
- **IBM VXA 320 1U Autoloader (87691VX)** 3-26
- **IBM Fibre Channel Host Bus Adapters (HBAs)** 3-27
- **IBM IntelliStation Z Pro** 3-28

3.2 Hewlett Packard (HP) Servers
- **HP BladeSystem:** 3-29
- **HP Financial Services** 3-40

3.3 Mid Size Servers and Blades
- **HP Blades** 3-42

3.4 Sun
- **Sun Blade 6000 Family** 3-59
- **Sun Blade Intel Xeon X6250 Server Module** 3-62
- **Sun Blade Intel Xeon Processor** 3-62
- **Sun x64 Systems Dominant On HPC Compute-Intensive Workloads** 3-66
- **Sun Versatile Enterprise Blade Platform** 3-67
- **Sun Refresh Service: Build an "Always Fresh" Datacenter** 3-71
- **Sun Blade 6000 Modular System Availability and Pricing** 3-71

3.5 Fujitsu Siemens Servers
- **Source: Fujitsu Siemens** 3-72
- **Fujitsu Siemens Dynamic IT for SAP** 3-74
- **Fujitsu Siemens Dynamic IT for E SOA** 3-75
- **Fujitsu Siemens Virtual Tape Appliance CentricStor** 3-75
- **Security Solutions From Fujitsu Siemens Computers** 3-76
- **Fujitsu Siemens Server Security** 3-76
- **Fujitsu Siemens Network Security** 3-77

3.6 Entry Level Servers
- **Dell** 3-78
- **IBM Entry Servers** 3-81

3.7 Nor-Tech Custom System Builder
- **Nor-Tech Custom System Builder** 3-85

3.8 Egenera 86
- **Egenera BladePlane** 3-92
- **Egenera Switch Blade (sBlade™)** 3-93
- **Egenera Control Blade (cBlade™)** 3-93
- **Egenera PAN Manager Software** 3-94

3.9 Verari Systems
- **Verari Systems Open Architecture for Open-Source** 3-95
- **Verari Systems Open Architecture for Open-Source** 3-96
3.9.3 Verari Systems Industries Served 3-97
3.10 Appro Launches 1U Entry-Level Server 3-98

4. SERVER TECHNOLOGY 4-1
4.1 Intel Server HTTP Dynamic Server Aspects 4-1
4.2 Modular Component-Style Architecture For Servers 4-3
4.3 Blade Interconnect Technology 4-3
4.3.1 InfiniBand 4-7
4.3.2 InfiniBand (IB) Fabric Topology 4-10
4.3.3 Infiniband High-Performance Interconnect 4-12
4.3.4 10-Gigabit Ethernet 4-12
4.4 Supercomputing 4-13
4.5 Cluster File Systems 4-13
4.6 Intel Ultra-Low Voltage Processors 4-14
4.7 Open Specification For Blade Servers 4-16
4.7.1 Open Application Programming Interfaces (APIs) 4-16
4.7.2 Intel 4-18
4.7.3 Linux 4-18
4.7.4 Linux on the Mainframe 4-18
4.7.5 Robust Unix and Windows-Based Systems 4-19
4.7.6 Mainframe Economics 4-19
4.7.7 Linux Capabilities 4-20
4.8 WebServices 4-20
4.9 Autonomic Computing Attributes 4-22
4.9.1 Autonomic Computing Architecture Framework 4-24
4.9.2 IBM Grid Computing 4-31
4.10 Graphics 4-32
4.11 Packet Computing Resource Board (PCRB) 4-33
4.12 Packet Processor Resource Board (PPRB) 4-33
4.12.1 Packet Voice Resource Board 4-34
4.13 Evolution of Appliances 4-35
4.14 Thin Film Battery Cell Construction 4-37
4.14.1 Impact Of Nanotechnology 4-38
4.14.2 Lithium Ion Cells Optimized For Capacity 4-39
4.14.3 Flat Plate Electrodes 4-40
4.14.4 Spiral Wound Electrodes 4-40
4.14.5 Multiple Electrode Cells 4-41
4.14.6 Fuel Cell Bipolar Configuration 4-41
4.14.7 Electrode Interconnections 4-42
4.14.8 Sealed Cells and Recombinant Cells 4-43
4.14.9 Battery Cell Casing 4-43
4.14.10 Button Cells and Coin Cells 4-45
4.14.11 Pouch Cells 4-45
4.14.12 Prismatic Cells 4-45
4.15 Thin Film Batteries 4-46
4.15.1 Thin Film Battery Timescales and Costs 4-49
4.16 Naming Standards For Cell Identification 4-49
4.16.1 High Power And Energy Density 4-50
4.16.2 High Rate Capability 4-51
4.17 Comparison Of Rechargeable Battery Performance 4-51
4.18 Polymer Film Substrate 4-56
4.19 Micro Battery Solid Electrolyte 4-57
4.20 Battery Life Cycle 4-58
4.21 Battery Power 4-58
4.22 Thin Film Battery Solid State Energy Storage 4-75
4.22.1 Valence Saphion® Technology 4-76
4.22.2 Valence High Performance Energy Storage Solutions 4-79
4.22.3 Valence Thin Film Battery Power 4-85
4.22.4 Need For Alternative to Lead-Acid Battery 4-85
4.22.5 Valence Thin Film Battery Superior Storage and Run-Time 4-86
4.22.6 Valence Lower Overall Cost Of Ownership 4-87
4.23 Ovonics 4-95
4.23.1 Oak Ridge Micro-Energy, Inc. 4-96
4.23.2 Oak Ridge Micro-Energy Thin-Film Rechargeable Lithium Batteries 4-97
4.23.3 NanoEner 4-100
4.23.4 EnerDel 4-101

SERVER COMPANY PROFILES

5. SERVER COMPANY PROFILES 5-1
5.1 Appro 1 5-1
5.1.1 Appro Supplies Three National Laboratories With 438 TeraFlop High Performance Computing Clusters - 5-1
5.2 Ciprico 5-4
5.3 Egenera 5-4
5.3.1 Egenera BladeFrame System 5-4
5.3.2 Egenera Virtualization Technology 5-5
5.3.3 Egenera Customers 5-5
5.3.4 Egenera Solution 5-7
5.3.5 Egenera Strategy 5-10
5.4 Fujitsu 5-10
5.4.1 Fujitsu Network Communications 5-14
5.4.2 Fujitsu Considers WiMAX vs. 3G vs. Wi-Fi 5-14
5.4.3 Fujitsu FLASHWAVE® 7500 Small System 5-14
5.4.4 Fujitsu FASST Transition Solutions 5-15
5.5 W. L. Gore & Associates 5-15
5.6 Hewlett Packard 5-16
5.6.1 HP Products and Services; Segment Information 5-16
5.6.2 Hewlett Packard Technology Solutions Group 5-17
5.6.3 Hewlett Packard Enterprise Storage and Servers 5-18
5.7 IBM 5-19
5.7.1 IBM's Capabilities 5-21
5.8 Nor-Tech 5-21
5.9 Quellan 5-22
5.10 Sun Microsystems 5-22
5.10.1 Sun Business Strategy 5-24
5.11 Verari Systems 5-27
5.11.1 Verari Systems Customers 5-27
5.11.2 Verari Systems Line Of Computing Solutions 5-28
List of Tables and Figures

<table>
<thead>
<tr>
<th>SERVER EXECUTIVE SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-1</td>
</tr>
<tr>
<td>Server Vendor Positioning</td>
</tr>
<tr>
<td>Table ES-2</td>
</tr>
<tr>
<td>Server Computing Market Driving Forces</td>
</tr>
<tr>
<td>Table ES-3</td>
</tr>
<tr>
<td>Blade Server Market Growth Drivers</td>
</tr>
<tr>
<td>Figure ES-4</td>
</tr>
<tr>
<td>Worldwide Total Server Shipments</td>
</tr>
<tr>
<td>Market Shares, Dollars, First Three Quarters 2007</td>
</tr>
<tr>
<td>Table ES-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVER MARKET DESCRIPTION AND MARKET DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1-1</td>
</tr>
<tr>
<td>Promise Of Blade Servers</td>
</tr>
<tr>
<td>Table 1-2</td>
</tr>
<tr>
<td>Comparison Of Electrical Power Consumption Between Server Blades And 1u Rack Mount Servers:</td>
</tr>
<tr>
<td>Table 1-3</td>
</tr>
<tr>
<td>Blade Infrastructure Economies</td>
</tr>
<tr>
<td>Table 1-4</td>
</tr>
<tr>
<td>Summary Overview Cost Advantage of Mainframe vs. Distributed Systems Single Application Analysis (Next Page)</td>
</tr>
<tr>
<td>Table 1-5</td>
</tr>
<tr>
<td>Blade Server Functions</td>
</tr>
<tr>
<td>Table 1-6</td>
</tr>
<tr>
<td>Blade Value Propositions Expressed As Business Goals</td>
</tr>
<tr>
<td>Table 1-7</td>
</tr>
<tr>
<td>IT Infrastructure Systems</td>
</tr>
<tr>
<td>Table 1-8</td>
</tr>
<tr>
<td>Information Technology (IT) Organizational Challenges</td>
</tr>
<tr>
<td>Table 1-9</td>
</tr>
<tr>
<td>Addressing IT Challenges</td>
</tr>
<tr>
<td>Table 1-10</td>
</tr>
<tr>
<td>Modular Aims For Achieving Control Over IT Department</td>
</tr>
<tr>
<td>Table 1-11</td>
</tr>
<tr>
<td>Modular Functions That Provide Control Over IT Department</td>
</tr>
<tr>
<td>Table 1-12</td>
</tr>
<tr>
<td>IT Organizational Responsibilities</td>
</tr>
<tr>
<td>Table 1-13</td>
</tr>
<tr>
<td>IT Lifecycle Encompasses Continuous, Integrated Processes</td>
</tr>
<tr>
<td>Table 1-14</td>
</tr>
<tr>
<td>Resource Planner Components</td>
</tr>
</tbody>
</table>
Table 1-15
Resource Planner Benefits
Table 1-16
Functionality Of IT Financial Manager Software

SERVER MARKET FORECASTS AND MARKET SHARES

Table 2-1
Server Vendor Positioning
Table 2-2
Server Functions
Table 2-3
Server Computing Market Driving Forces
Table 2-4
Blade Server Market Growth Drivers
Table 2-5
Computing Technology Architecture Market Forces
Table 2-6
Benefits of Servers
Table 2-7
Server Benefits
Table 2-8
Server Market Driving Forces
Figure 2-9
Worldwide Total Server Shipments
Market Shares, Dollars, First Three Quarters 2007
Table 2-10
Worldwide Total Server Shipments
Market Shares, Dollars, First Three Quarters 2007
Figure 2-11
Worldwide High End Server Shipments
Market Shares, Dollars, First Three Quarters 2007
Table 2-12
Worldwide High End Server Shipments
Market Shares, Dollars, First Three Quarters 2007
Figure 2-13
Worldwide Mid Range Server Shipments
Market Shares, Dollars, First Three Quarters 2007
Table 2-14
Worldwide Mid Range Server Shipments
Market Shares, Dollars, First Three Quarters 2007
Figure 2-15
Worldwide Low End Server Shipments
Market Shares, Dollars, First Three Quarters 2007
Table 2-16
Worldwide Mid Range Server Shipments
Market Shares, Dollars, First Three Quarters 2007
Figure 2-17
Worldwide Total Server Shipments
Market Forecasts, Dollars, 2008-2013
Figure 2-18
Worldwide Total Server Shipments
Market Forecasts, Units, 2008-2013
Table 3-19 3-30
Hewlett Packard HP ProLiant Key benefits
Table 3-20 3-31
Hewlett Packard HP ProLiant features
Table 3-21 3-32
Hewlett Packard HP ProLiant functions
Table 3-21 3-33
Hewlett Packard ProLiant BL35p Server Blade Dual-Core AMD Opteron Features
Table 3-22 3-34
Hewlett Packard ProLiant BL35p Server Blade Manageability Functions
Table 3-24 3-36
Hewlett Packard ProLiant Essentials
Table 3-25 3-38
Hewlett Packard p-Class BladeSystem Applications
Table 3-26 3-39
HP BladeSystem Portfolio Of Services
Table 3-27 3-40
HP Services Industries Targeted
Figure 3-28 3-41
HP ProLiant BL35p Server Blade
Table 3-29 3-42
HP BladeSystem, c-Class Enclosure Blade Components
Table 3-30 3-45
HP xw4550 Workstation Features
Figure 3-31 3-47
Sun Blade 6000 Modular System
Table 3-32 3-48
Sun Blade 6000 Modular System Features
Table 3-33 3-49
Sun SPARC Enterprise M4000 Server
Table 3-34 3-50
Sun SPARC Enterprise M4000 Server
Figure 3-35 3-51
Sun SPARC Enterprise T2000 Server
Table 3-36 3-51
Sun SPARC Enterprise T2000 Server
Figure 3-37 3-53
Sun SPARC Enterprise T2000 Server
Table 3-38 3-54
Sun SPARC Enterprise T2000 Server Functions
Table 3-38 (Continued) 3-55
Sun SPARC Enterprise T2000 Server Functions
Table 3-39 3-55
Sun Fire X2100 M2 Server
Table 3-40 3-56
Sun Fire X2100 M2 Server Functions
Table 3-41 3-57
Sun Fire X2100 M2 Server
Table 3-42 3-58
Sun Fire X2100 M2 Server
Figure 3-43 3-59
Sun Blade 6000 Configuration
Figure 3-44 3-60
Sun Blade 6000 Modular System Gallery
Table 3-46 3-62

Sun Blade Intel Xeon Processor Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor Speed</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>Memory</td>
<td>8 GB DDR2</td>
</tr>
<tr>
<td>Expansion Slots</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3-47 3-64

Sun Blade Intel Xeon Key Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Hosting</td>
<td>Multiple users</td>
</tr>
<tr>
<td>Database</td>
<td>High performance</td>
</tr>
<tr>
<td>Media Streaming</td>
<td>Real-time delivery</td>
</tr>
</tbody>
</table>

Table 3-48 3-65

Sun Blade Intel Xeon Processors Key Benefits

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>Up to 8 processors</td>
</tr>
<tr>
<td>Reliability</td>
<td>99.995% uptime</td>
</tr>
<tr>
<td>Performance</td>
<td>High clock speed</td>
</tr>
</tbody>
</table>

Table 3-49 3-66

Sun Blade 6000 Chassis Product Line Server Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade A</td>
<td>Dual-socket server</td>
</tr>
<tr>
<td>Blade B</td>
<td>Single-socket server</td>
</tr>
</tbody>
</table>

Table 3-50 3-69

Sun Blade 6000 Modular System Components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>Holds up to 4 blades</td>
</tr>
<tr>
<td>Power Supply</td>
<td>1 kW</td>
</tr>
<tr>
<td>Cooling</td>
<td>Hot swap</td>
</tr>
</tbody>
</table>

Table 3-51 3-70

Sun Blade 6000 Modular System Features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID</td>
<td>0, 1, 5, 10</td>
</tr>
<tr>
<td>Hot Swap</td>
<td>Drives and fans</td>
</tr>
<tr>
<td>Management</td>
<td>Web-based interface</td>
</tr>
</tbody>
</table>

Table 3-52 3-72

Fujitsu Siemens CELSIUS W Series

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Intel Xeon</td>
</tr>
<tr>
<td>Memory</td>
<td>4 GB DDR2</td>
</tr>
<tr>
<td>Expansion Slots</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3-53 3-73

Fujitsu Siemens CELSIUS W Series Server Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor Speed</td>
<td>2.0 GHz</td>
</tr>
<tr>
<td>Memory</td>
<td>2 GB DDR2</td>
</tr>
<tr>
<td>Expansion Slots</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3-54 3-77

Fujitsu Siemens Network Security

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall</td>
<td>1000 sessions</td>
</tr>
<tr>
<td>Intrusion Detection</td>
<td>1000 packets</td>
</tr>
</tbody>
</table>

Table 3-55 3-78

Fujitsu Siemens Celsius W Series Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID</td>
<td>0, 1, 5, 10</td>
</tr>
<tr>
<td>Hot Swap</td>
<td>Drives and fans</td>
</tr>
<tr>
<td>Management</td>
<td>Web-based interface</td>
</tr>
</tbody>
</table>

Table 3-56 3-79

Dell Power Edge Blades and Chassis

<table>
<thead>
<tr>
<th>Blade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerEdge M600</td>
<td>Dual-socket server</td>
</tr>
<tr>
<td>PowerEdge M610</td>
<td>Dual-socket server</td>
</tr>
</tbody>
</table>

Table 3-57 3-80

Component Errors IBM Light-Path Diagnostics Can Detect

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Microcode corruption</td>
</tr>
<tr>
<td>Memory</td>
<td>Memory failures</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>Media errors</td>
</tr>
</tbody>
</table>

Table 3-58 3-82

IBM Blade Environment

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>Up to 8 processors</td>
</tr>
<tr>
<td>Reliability</td>
<td>99.995% uptime</td>
</tr>
<tr>
<td>Performance</td>
<td>High clock speed</td>
</tr>
</tbody>
</table>

Table 3-59 3-84

IBM Blade.org partners

<table>
<thead>
<tr>
<th>Partner</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>Enterprise server solutions</td>
</tr>
<tr>
<td>Dell</td>
<td>PowerEdge server solutions</td>
</tr>
<tr>
<td>Oracle</td>
<td>Database solutions</td>
</tr>
</tbody>
</table>

Table 3-60 3-85

Nor-Tech Servers And High-Performance Clusters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>Up to 16 processors</td>
</tr>
<tr>
<td>Reliability</td>
<td>99.995% uptime</td>
</tr>
<tr>
<td>Performance</td>
<td>High clock speed</td>
</tr>
</tbody>
</table>

Table 3-61 3-86

Egenera Systems PAN Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>Up to 16 processors</td>
</tr>
<tr>
<td>Reliability</td>
<td>99.995% uptime</td>
</tr>
<tr>
<td>Performance</td>
<td>High clock speed</td>
</tr>
</tbody>
</table>

Table 3-62 3-87

Egenera Systems Blade

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>Up to 16 processors</td>
</tr>
<tr>
<td>Reliability</td>
<td>99.995% uptime</td>
</tr>
<tr>
<td>Performance</td>
<td>High clock speed</td>
</tr>
</tbody>
</table>

Table 3-63 3-89

Egenera Systems BladeFrame® Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>Up to 16 processors</td>
</tr>
<tr>
<td>Reliability</td>
<td>99.995% uptime</td>
</tr>
<tr>
<td>Performance</td>
<td>High clock speed</td>
</tr>
</tbody>
</table>

Table 3-64 3-90

Verari Systems Industries Served

<table>
<thead>
<tr>
<th>Industry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare</td>
<td>Patient care</td>
</tr>
<tr>
<td>Finance</td>
<td>Investment management</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>Network services</td>
</tr>
</tbody>
</table>

Table 4-1 4-1

Intel Server HTTP Dynamic Server Aspects

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>Up to 8 processors</td>
</tr>
<tr>
<td>Reliability</td>
<td>99.995% uptime</td>
</tr>
<tr>
<td>Performance</td>
<td>High clock speed</td>
</tr>
</tbody>
</table>

Table 4-2 4-10

InfiniBand (IB) Fabric Topology

<table>
<thead>
<tr>
<th>Topology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh</td>
<td>Multiple interconnects</td>
</tr>
<tr>
<td>Ring</td>
<td>Single loop</td>
</tr>
<tr>
<td>Tree</td>
<td>Hierarchical</td>
</tr>
</tbody>
</table>

Table 4-3 4-21

Web Services Technology Positioning

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>Up to 8 processors</td>
</tr>
<tr>
<td>Reliability</td>
<td>99.995% uptime</td>
</tr>
<tr>
<td>Performance</td>
<td>High clock speed</td>
</tr>
</tbody>
</table>
WINTERGREEN RESEARCH, INC.

Table 4-31
EnerDel’s Business Strategy
Table 4-32
EnerDel Business Positioning

SERVER COMPANY PROFILES

Figure 5-1
Fujitsu Server Innovation
Table 5-2
Fujitsu Server Positioning
Table 5-3
Fujitsu Servers
WINTERGREEN RESEARCH, INC.

ABOUT THE COMPANY

WINTERGREEN RESEARCH, has a unique research strategy that relates to identifying market trends through reading and interviewing opinion leaders. By reading the electronic equivalent of 40 feet of paper, WINTERGREEN RESEARCH senior analysts can learn a lot more about markets, a lot faster than can be learned through expensive surveys and focus groups. Thinking about market trends is a high priority at WINTERGREEN RESEARCH. As with all research, the value proposition for competitive analysis comes from intellectual input.

It is a luxury really, available to only a very few people, to be able to gather information, lots of information from reading massive amounts of content, and then trying to make sense of that content. The ability to think about market trends is enhanced by doing it over and over for many different markets. That is what WINTERGREEN RESEARCH is all about: reading and thinking is an essential aspect of competitive analysis. Talking to opinion leaders is the third essential aspect of producing good, reliable data.

WINTERGREEN RESEARCH, founded in 1985, provides strategic market assessments in telecommunications, communications equipment, health care, Internet and advanced computer technology. Industry reports focus on opportunities that expand existing markets or develop major new markets. The reports assess new product and service positioning strategies, new and evolving technologies, and technological impact on products, services, and markets. Market shares are provided. Leading market participants are profiled, and their marketing strategies, acquisitions, and strategic alliances are discussed. The principals of WINTERGREEN RESEARCH have been involved in analysis and forecasting of international business opportunities in telecommunications and advanced computer technology markets for over 30 years.
ABOUT THE PRINCIPAL AUTHORS

ELLEN T. CURTISS, Technical Director, co-founder of WinterGreen Research, conducts strategic and market assessments in technology-based industries. Previously she was a member of the staff of Arthur D. Little, Inc., for 23 years, most recently as Vice President of Arthur D. Little Decision Resources, specializing in strategic planning and market development services. She is a graduate of Boston University and the Program for Management Development at Harvard Graduate School of Business Administration. She is the author of recent studies on worldwide telecommunications markets, the top ten internet equipment companies, the top ten contract manufacturing companies, and the Top Ten Telecommunications market analysis and forecasts.

SUSAN EUSTIS, President, co-founder of WinterGreen Research, has done research in communications and computer markets and applications. She holds several patents in microcomputing and parallel processing. She has the original patents in electronic voting machines. She has new patent applications in format varying, multiprocessing, and electronic voting. She is the author of recent studies of the Regional Bell Operating Companies’ marketing strategies, Internet equipment, biometrics, a study of Internet Equipment, Worldwide Telecommunications Equipment, Top Ten Telecommunications, Digital Loop Carrier, Web Hosting, Web Services, and Application Integration markets. Ms. Eustis is a graduate of Barnard College.
ORDER FORM

Return To: WinterGreen Research, Inc.
6 Raymond Street
Lexington, MA 02421 USA
Phone: (781) 863-5078 --- Fax: (781) 863-1235 or (781) 860-0897

PLEASE ENTER MY ORDER FOR:

Blade Server Strategies and Forecasts 2008-2013

-ALL REPORTS ARE AVAILABLE IN EITHER PRINT OR PDF-

_______PDF ________PRINT

____ENCLOSED IS MY CHECK FOR $2,800 FOR SINGLE COPY, $3,200 FOR WEB SITE POSTING

____PLEASE BILL MY COMPANY USING P.O. NUMBER______________________________

____PLEASE CHARGE MY MASTER CARD/Visa/American Express—

CARD NUMBER __________________EXP. DATE________________
If charging to a Credit card you may e-mail the order form, but not the card information
Fax or Call with credit card information - Do not send card number as e-mail - You may send the order as e-mail

____ADDITIONAL COPIES, @ $375 (EXTRA COPY PRICE IN EFFECT ONLY WITH INITIAL ORDER)

NAME__TITLE________________________________

SIGNATURE__

COMPANY__DIVISION________________________________

ADDRESS__

CITY__STATE / ZIP________________

TELEPHONE__

FAX__

EMAIL__

PLEASE NOTE: RESIDENTS OF MASSACHUSETTS AND CONNECTICUT MUST INCLUDE APPROPRIATE SALES TAX

SUBSCRIBERS OUTSIDE THE UNITED STATES MUST PROVIDE PREPAYMENT IN U.S. FUNDS

WINTERGREEN RESEARCH, INC.